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Abstract
In the framework of geometrical optics we consider the inverse problem
consisting of obtaining refractive indexes n = n(x, y) of a two-dimensional
transparent heterogeneous isotropic (dispersive or not) medium from a known
(observed or given) family f (x, y) = c0 of planar light rays of a definite
colour. We establish a first-order linear partial differential equation relating
the assigned family of light rays with all possible refractive indexes compatible
with this family. Using this equation we derive certain criteria to check whether
a given family of rays can be traced in the presence of a refractive index, which
we assume in advance to be either radial or homogeneous of any degree m. We
give appropriate examples for the two special cases and also an example for
the general case.

PACS numbers: 42.15.−i, 78.20.Ci

1. Introduction

It is known that the mathematical treatment of the propagation of light makes use of two
theories: the wave theory of light (physical optics) and the theory of light rays (geometrical
optics). Both theories seem to be fundamentally different and can be developed independently
of each other. Actually, however, they are connected. Both points of view are needed, even in
problems of practical optical design [1–3].

The most general medium where light propagates is heterogeneous (or inhomogeneous)
and anisotropic, but we shall confine our attention to the propagation of light in transparent
media which are heterogeneous and isotropic, dispersive or not [4, 5]. This is, for instance, the
case of the earth’s atmosphere [1, 6], or of the lenses of some optical instruments [2, 10, 11].
We shall not consider absorbing media or non-isotropic media, such as metals or crystals.
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In an heterogeneous isotropic medium the optical properties can be characterized by the
refractive index of the medium

n = n(x, y, z) = c

v
, (1)

where x, y, z are rectangular Cartesian coordinates, c the velocity of light in vacuo and
v(x, y, z) the velocity of propagation of light at each point in the medium. It is assumed
that, in each medium, the function n(x, y, z) is continuous and possesses continuous partial
derivatives.

From now on we shall adopt as c = 1 and we shall accept as a basis of our study the
well-known (variational) Fermat’s Principle: in transparent media the actual ray along which
light travels from P0 to P1 has a stationary optical length when compared with adjacent curves
joining P0 to P1, that is

δ

∫ P1

P0

n ds = 0, (2)

where ds is the line element of the curves [1–3].
The direct problem of geometrical optics consists in finding the paths of light rays in a

given transparent medium with known refractive index n = n(x, y, z). The pertinent system
of ordinary differential equations of the light rays can be found, of course, from (2).

In this paper we consider, with reference to an inertial Cartesian orthogonal system Oxyz,
a two-dimensional transparent heterogeneous isotropic medium, the pertinent refractive index
n of which depends only on the two variables x, y. In other words, we assume that the light
rays lie in planes perpendicular to the z-axis of the system and the refractive index n(x, y) is
constant along each straight line parallel to the z-axis. So, it is not restrictive to study families
of light rays in the Oxy plane.

In general the function n depends also on the colour of the light. In the present study we
assume that all light rays, constituting the monoparametric family (3) below, are of the same
colour. In other words we consider functions n = n(x, y;ω) with the cyclic frequency ω as a
parameter common for all members of the family.

We look at the Fermat’s principle from the point of view of the inverse problem, that is:
given a family of rays to find compatible to it refractive indexes. More precisely we can state
our version of the inverse problem of geometrical optics as follows:

Given a monoparametric family of monochromatic light rays in a transparent
heterogeneous isotropic medium, f (x, y) = c0 (c0 being constant along each ray but varying
from ray to ray), we want to find all the indexes of refraction n(x, y) allowing for the creation
of the given family. (For an account of inverse problems in optics see [7, 8].)

We prove that the requested functions n = n(x, y) are solutions of a first-order linear
partial differential equation (equation (12) below) which is our main result. It relates families
of light rays and ‘compatible’ refractive indexes generating a given in advance or observed
family of light rays. We shall call this equation refractive index equation (RIE).

In section 2 we derive the RIE from Fermat’s principle, reasoning from the inverse point of
view. In order to ease the mathematics involved, we seek refractive indexes n(x, y) of one
of the following two types: (i) radial: n = n(r), r = (x2 +y2)

1
2 (section 3), (ii) homogeneous of

any degree m, that is of the form n(x, y) = xmR
(

y

x

)
with R arbitrary function of its argument

(section 4). For each of the above two cases we shall show that, in general, the refractive index
can be found uniquely (apart from a multiplicative constant), provided that the given family
of rays or, more conveniently, the ‘slope function’ γ (x, y), of the orthogonal trajectories of
the family, defined below by (9), satisfies certain conditions.

Examples are presented for all cases and subcases studied in sections 3 and 4. There
exist, of course, families of rays produced by refractive indexes not belonging to one of the
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above types, which are non-radial and non-homogeneous. An example originating from the
literature is presented in section 5. The general comments of section 6 mostly refer to the
physical justification of this work.

2. Partial differential equation for the refractive indexes

Suppose that we are given the equation

f (x, y) = c0 (3)

of a monoparametric family of light rays (normal congruence of curves) in a transparent
isotropic heterogeneous medium (c0 is constant on each ray, but varies from ray to ray).
We shall find a PDE in n = n(x, y) whose solutions give all the refractive indexes n(x, y)

compatible with the given family of rays (3).
We start with Fermat’s principle (2). The line element ds, in Cartesian orthogonal

coordinates, is

ds =
√

dx2 + dy2 (4)

so equation (2) reads

δ

∫ x1

x0

n(x, y)
√

1 + y ′2 dx = 0. (5)

The variational equation (5) is equivalent to Euler’s ordinary differential equation

ny

√
1 + y ′2 − d

dx

[
n

y ′√
1 + y ′2

]
= 0 (6)

where the subscript denotes partial derivative of the function n, and the prime denotes derivative
with respect the variable x. By straightforward calculations we obtain

y ′nx − ny +
y ′′

1 + y ′2 n = 0. (7)

This differential equation of the light rays, as far as we know, has been interpreted, up to
now, only from the point of view of the direct problem of geometrical optics, that is: given the
refractive index n(x, y) of the medium, to solve equation (7) as ordinary nonlinear differential
equation of the second order in the unknown function y = y(x).

We want now to transform the equation (7) to make it suitable for inverse problem
considerations (that is given monoparametric families of rays to find compatible refractive
indexes). To this end we proceed as follows: differentiating the equation of the family of rays
(3) with respect to x, we obtain

y ′ = −fx

fy

. (8)

Introducing the slope function of the orthogonal trajectories of the family (3) (that is the
traces in the plane Oxy of the wave fronts associated with the given family of rays)

γ (x, y) = fy

fx

, (9)

we write y ′ and y ′′ as functions of γ

y ′ = − 1

γ
, y ′′ = �

γ 3
(10)
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where

� = γ γx − γy. (11)

It is important to note that to each function f (x, y) there corresponds one function γ (x, y)

and, vice versa, to each γ (x, y) there corresponds one family (3).
Substituting (10) and (11) in (7) and considering nx and ny as partial derivatives of the

unknown function n(x, y), we obtain
∂n

∂x
+ γ (x, y)

∂n

∂y
= �(x, y)n (12)

with

�(x, y) = �

1 + γ 2
. (13)

Equation (12) is a linear partial differential equation of the first order in the unknown
function n = n(x, y) whose solutions provide all possible refractive indexes of the preassigned
transparent medium capable to generate a given (or observed) family of light rays.

Comment. The partial differential equation (12) of the refraction indexes (RIE) can be derived
also from the known vectorial equation of light rays

κ = �ν · grad(log n) (14)

where κ is the curvature at a generic point of the light rays and �ν the normal unity vector (see
formula (14) in section 3.2 of the treatise Principles of Optics by Born and Wolf [1]). We can
transform this formula, from the inverse point of view, taking into account that

κ = �(1 + γ 2)−
3
2 , νx = (1 + γ 2)−

1
2 , νy = γ (1 + γ 2)−

1
2 . (15)

If we insert (15) in (14) we obtain, by straightforward calculations, the partial differential
equation (12). As seen by the first of equations (15), � = 0 is associated with a family of
straight lines.

3. Radial refractive indexes

In this section, instead of f (x, y) = c0, we consider the family (3) in polar coordinates r, θ ,
that is

f (r, θ) = c0 (16)

and, instead of the slope function (9), we introduce the new function

δ(r, θ) = fθ

fr

. (17)

Here again there exists an one-to-one correspondence of monoparametric families (16)
and slope functions (17).

We propose the following problem: given the family of curves (16), to find all the refractive
indexes which depend only on the distance r from a fixed point O (radially symmetric refractive
indexes) n = n(r), r = (x2 +y2)

1
2 and which are compatible with the family (16) of light rays.

We take advantage of the special form of the refractive index and we rewrite
equation (12) as follows:

rnr +
δ

r
nθ +

(
1 +




δ2 + r2

)
n = 0 (18)

where


 = δ2 + r(δθ − δδr) (19)

and n = n(r, θ) is to be found.
Let us consider the following two cases.
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3.1. n = n(r), any given δ = δ(r, θ)

To have a solution of (18) of this form, we must have necessarily
(



δ2+r2

)
θ

= 0 and this leads
to the condition:

(r2 + δ2)(δδrθ − δθθ ) + [(r2 − δ2)δr + 2δδθ − 2rδ]δθ = 0. (20)

So we arrive at:

Proposition 1. The slope functions (17) of all families (16) compatible with radial refractive
indexes n = n(r) satisfy the differential condition (20).

Example 1. It can be checked (e.g. by Mathematica) that the family of real branches of conics

f (r, θ) = −r cos θ +
√

r2 cos2 θ − 4r + 4 = c0 (21)

satisfies the condition (20). Therefore there exist solutions

n = n(r) = n0

√
|r − 2|

r

with n0 an arbitrary constant.

3.2. n = n(r) and f (r, θ) = rg(θ)

The family consists of geometrically similar light rays and (17) gives

δ = r�(θ) (22)

where

� = g′

g
, (23)

prime denoting derivative with respect to θ .
In this case the condition (20) becomes

(1 + �2)�′′ = 2�(�′)2 (24)

and the general solution of (24) is

� = tan(z0θ + z1) (25)

with z0 �= 0, z1 arbitrary constants. Inserting (22) with � given by (25) into (18), we obtain
the refractive index

n(r) = n0r
−(1+z0). (26)

Finally, integrating (23) with � given by (25) we obtain

Proposition 2. The families of curves (sinusoidal spirals)

f (r, θ) = r−z0 cos(z0θ + z1) = c0 (27)

are compatible with the refractive index (26).

Remark. If we put z0 = − 1
2 , z1 = 0 the family of light rays (27) becomes r cos2

(
θ
2

) = const.,
that is a family of parabolas compatible with the refractive index n(r) = n0√

r
. This index of

refraction is, for the earth’s atmosphere, in agreement with the known Simpson’s hypothesis
(see Smart [6], p 72)(

n

n0

)µ+1

= r0

r
,

where n0 and r0 are respectively the refractive index and the radius at the point of observation
(with µ = 1). This formula was proposed also by the French astronomer P Bouguer.



180 F Borghero and G Bozis

4. Homogeneous refractive indexes

In this section we consider families of light rays (3) which we want to be traced in a medium
with homogeneous refractive index n(x, y) = xmR

(
y

x

)
, with degree of homogeneity m. The

question is if, for a preassigned family of rays, such refractive indexes do exist.
We distinguish two cases:

4.1. n = homogeneous of degree m, γ is not homogeneous of degree zero

We have

n(x, y) = xmR(z), z = y

x
(28)

and equation (12) becomes

mR − zR′ = x�R − γR′ (29)

where the prime denotes derivative with respect to z and where � is given by (13).
On the other hand, the above assumption regarding γ (x, y) means that

xγx + yγy �= 0. (30)

The right-hand side of equation (29) must be a function of z (i.e. homogeneous in x, y of
degree zero). Therefore

x(x�R − γR′)x + y(x�R − γR′)y = 0 (31)

and this leads to

R′

R
= ρ (32)

where

ρ = x(x�x + y�y + �)

xγx + yγy

. (33)

But ρ(x, y) must be homogeneous of degree −1, i.e.

xρx + yρy + ρ = 0

and this leads to the condition for the given families

(xγx + yγy)[x
2�xx + 2xy�xy + y2�yy + 2(x�x + y�y)]

= (x2γxx + 2xyγxy + y2γyy)(x�x + y�y + �). (34)

Therefore we can state the following:

Proposition 3. Any family of rays γ (x, y) satisfying (30) and (34) is compatible with all
homogeneous refractive indexes (28) found from (32), after solving it for R by quadratures.

Example 2. The functions

γ = √
axm − 1 (35)

satisfy the condition (34). From (33) we have ρ = 0, therefore, from (32) and (28) we obtain

n = n0x
m. (36)
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4.2. n homogeneous of degree m, γ homogeneous of zero degree

Then equation (12), (or equation (29) with γ = γ (z), � = − γ ′(1+zγ )

x(1+γ 2)
) becomes

R′

R
= τ (37)

where

τ = 1

z − γ

[
m +

(1 + zγ )γ ′

1 + γ 2

]
. (38)

So we state

Proposition 4. For any m and any γ = γ (z) �= z the homogeneous refractive indexes (28)
compatible with the given γ (z) are found by quadratures from (37).

Example 3. For γ = −z, (i.e. for the family of hyperbolas x2−y2 = c0), it is τ = 1
2z

(
m− 1−z2

1+z2

)
and, from (37), we find

R = R0z
m−1

2

√
1 + z2, (39)

so the pertinent refractive index is

n(x, y) = R0x
m

(y

x

) m−1
2

√
1 +

(y

x

)2
.

Remark 1. If we put in the previous formula m = 1 we find n(x, y) = R0

√
x2 + y2 = R0r

that is a homogeneous first degree refractive index proportional to r and compatible with
the family of hyperbolas x2 − y2 = c0. This could appear in a large layer of the atmosphere
near the earth’s surface when this surface becomes very hot by the Sun radiation. Then
the refractive index increases from the surface of the earth to some altitude where it takes
the maximum value before decreasing (mirage effect).

Remark 2. Consider the family of concentric circles in polar coordinates

r2 = c0. (40)

In this case γ = z and equation (18) of refraction indexes reads

nnr + n = 0 (41)

that is integrable by quadrature. Therefore, we conclude

Proposition 5. All homogeneous refractive indexes producing as light rays the family of
circles (40) are of the form

n(r, θ) = F(θ)

r
, (42)

where F(θ) is an arbitrary positive function. They are all of degree m = −1.

Remark 3 (regarding families of straight lines). If � = γ γx − γy = 0, then, from (12),
γ = − nx

ny
. Inserting this into γ γx − γy = 0 we obtain(

ny
2 − nx

2
)
nxy = nxny(nyy − nxx). (43)

This leads to

Proposition 6. All refractive indexes satisfying (43) allow, among others, for families of
straight lines rays given by γ = − nx

ny
. Such are for instance refractive indexes of the form

n = n(x) or n = n(y).
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5. General refractive indexes

We now apply equation (12) without imposing any limitations on the functions n(x, y) and
f (x, y), and we comment on a practical example taken from the literature.

Fletcher et al [10] studied the distribution of the refractive index in a symmetrical
cylindrical lens terminated by a circular planar face which has, as a centre, the origin O
of the system of coordinates and which is perpendicular to the axis of symmetry Ox. All
light rays parallel to Ox outside the lens, where n0 = 1, are curved inside the lens and pass
through the same focus F on Ox at a distance OF = f ∗ from the planar face. The problem is
essentially the same as a two-dimensional problem with plane layers parallel to Ox. Assuming
that n = n(r) (r = |y| is the distance of any point of the ray from the axis Ox), they reduced
the problem to two dimensions and found that the family of rays

x − 1

α
arcsin[c0 sinh(αy)] = f ∗, (44)

is compatible with the refractive index

n = n0 sech(αy) (45)

(α = π
2f ∗ = constant, n0 = constant, c0 is the parameter of the family).

We note that the parameter c0 in (44) does not enter into (45). Solved for c0, equation (44)
reads

f (x, y) = sin[α(x − f ∗)]
sinh(αy)

= c0. (46)

Let us now free ourselves from the limitation n = n(r) = n(y) and look for all refractive
indexes compatible with the family (46). For this case the PDE (12) reads

nx − tan[α(x − f ∗)]
tanh(αy)

ny = nα tan[α(x − f ∗)]. (47)

The general solution of (47) is

n = 1

cosh(αy)
�

(
cos[α(x − f ∗)]

cosh(αy)

)
, (48)

where � is an arbitrary function of its argument. For � = n0, equation (48) gives the known
solution (45), established by Fletcher et al.

Remark. We observe that the focus F = (f ∗, 0) is a singular point for the first member of the
family in the form (46), but not in the form (44). Of course if we take the limit of sin[α(x−f ∗)]

sinh(αy)

with (x, y) → (f ∗, 0) on each curve of the family (44) we find the pertinent value of the
parameter c0.

6. General comments

In this paper we studied in some detail the possibility of obtaining refractive indexes
n = n(x, y) of two variables under the assumption that a family of planar light rays (given
or observed) is known. On the grounds of Fermat’s principle, we derived what we called the
refractive index equation (RIE)(12). This PDE in n = n(x, y) is our basic result. Very recently
Fermat’s principle was applied by Marklund et al ([12]) and was discussed also by West ([13])
in optical models with a singularity in the centre. It was found that light trajectories are similar
to those around a black hole in the sense that, beyond a critical radius, the light cannot escape
but spirals into the singularity.
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If no assumption is made regarding the type of the refractive index, the RIE (12) has as
many solutions as an arbitrary function introduces. This totality of solutions was found by
(48) in section 5 for the family given by (44) or, equivalently, by (46). Yet, in general, these
solutions cannot be found because the pertinent subsidiary system of ODEs, corresponding to
the PDE (12), is nonlinear.

In order to ease the mathematics and to reduce the multitudiness of possible solutions,
we put certain restrictive assumptions regarding the form of the unknown refractive indexes
(e.g. radial or homogeneous). These assumptions generally imply certain criteria in the form
of differential conditions (e.g. the conditions (20) and (34)) which must be satisfied by the
‘given’ family of rays.

As regards the physical justification of the above assumptions, we know that optical media
with spherical refractive index n = n(r) are of considerable theoretical and practical interest
as they represent, in a certain sense, perfect optical instruments (Luneburg [2], p 164). On the
other hand, planar models are justified when n = n(r) because light rays in three-dimensional
media are lying on planes passing through the origin in the same manner as material particles
move in central force fields. Examples are as follows.

(i) The optical medium characterized by the refractive index function n(r) = n0/[1+(r/a)2],
where n0 and a are constants. This is an absolute instrument, known as the Maxwell’s
fish-eye, it has the interesting properties that the light rays are circles and the imaging is
an inversion ([1], p 147 and [2], p 172).

(ii) The so-called Luneburg lens is an inhomogeneous sphere with the refractive index function
n(r) = √

2 − r2(0 � r � 1), [2], p 187. When immersed in a homogeneous medium of
unity refractive index, it brings to a sharp focus, on the surface of the sphere, every incident
pencil of parallel rays, and vice versa, all light rays entering the sphere from any fixed point
P on its surface emerge from the sphere parallel to the diameter OP , [9–11]. Because
of its wide angle scanning capabilities it has useful applications in microwave antenna
design (see Rinehart [9]). Another practical application was considered by Fletcher et al
in connection to some researches on the eyes of fishes [10].

(iii) The Earth’s (as well as other planets’) atmosphere is assumed to have n = n(r) and,
on this basis, astronomers apply corrections to the observed zenith distances z of stars.
Not very close to the horizon, to a satisfactory approximation, these corrections are taken
proportional to tan z (see Smart, [6] pp 60–2).

(iv) As is known to astrophysicists, the generally spherical shape of stars tends to produce
spherically symmetrical refractive indexes. Einstein noted that gravity, as it curves the
ray paths in the neighboruhood of large masses, causes a certain change in the index of
refraction for the travelling electromagnetic wave ([14], pp 190–1).

In general, if the family of rays is preassigned, one is not expecting an affirmative answer
to the question of the existence of a refractive index of the above types (radial or homogeneous).
If, however, the pertinent criteria are fulfilled, the corresponding refractive index is usually
found up to certain integration constants. In contrast, if no limiting assumption is made for the
demanded function n = n(x, y) and the ‘given’ family f (x, y) = c0, one expects infinitely
many refractive indexes to allow for the creation of this family. This was illustrated by the
example of section 5.

The following comment refers to possible practical applications of the PDE (12). In order
to use it profitably we need possess a monoparametric family of light rays (3). Apparently this
is not feasible with data collected by observations. The best we can do with real measurements
data is to obtain (by a curve-fitting procedure) analytical equations F(x, y) = 0 for a number
of light rays and, out of these, to guess the form (3) of the family having these rays as members.
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Finally we note that, taken into account the well-known Hamiltonian optico-mechanical
analogy (see appendix II of [1]), the results of this paper for geometrical optics are in agreement
with analogous results obtained recently in the framework of the inverse problem of particle
dynamics (see [15, 16]).

This study may be extended to other types of refractive indexes in two variables
n = n(x, y) and also to the general case of three variables n = n(x, y, z).
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